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CHAPTER I BASIC CONCEPTS
1.1 Introduction, Objective
In the analysis of linear dynamic systems the mathematical description can be formulated as a single ordinary linear differential equation with constant coefficients. Upon application of transform methods a polynomial commonly called the "characteristic equation" is obtained. An essential part of most analysis problems is the evaluation of the roots (zeros) of this characteristic equation. Mitrovic (1,2) has developed a graphical technique which permits ready evaluation of the roots as a function of the values of two of the coefficients of the polynomial .
While there are many methods for evaluating the roots of a polynomial, few of these methods are of significant advantage in engineering synthesis problems. Mitrovic's method, because it relates the root values to coefficient values in a convenient graphical representation, provides a very useful approach to design.
Most of the methods available for analysis and design are either one parameter methods (such as the root locus method) or evaluate dynamic characteristics indirectly, or both (such as most frequency domain methods) Mitrovic's method is basically a two parameter method, but is readily extended to three parameters. It is possible to extend the method to handle more than three parameters, but the practical value of such techniques has not yet been established.
The original development by Mitrovic (1,2) considered only two coefficients of the polynomial, i.e., for an expression of the form
1-1
as +a ,s~ + - - - a0s + a0s + a,s + a_ = 0 (1-1) n n-1 3 2 1 o
the original development considers analysis and synthesis only in terms of a and a,. More recently (3,4) the basic concepts have been generalized to permit analysis and design in terms of any two coefficients. The objective of this research paper is to provide detailed analyses procedures, equations and techniques which will reduce the more recent advances to a more practical level. This is to be done by providing;
a) detailed stability analyses and rules for applying them to any of the Mitrovic planes.
b) tabulated equation pairs to assist the computations.
c) procedures and techniques for sketching the curves with a minimum amount of computational labor.
d) tabulated relationships to aid the sketching.
e) a digital computer program to assist with detailed computations .
f) some selected illustrations of the results in design applications 1-2. Review of Mitrovic's Method.
If all of the roots of a polynomial be inside some area in the s-plane, then proof of this can be established by enclosing the area by a contour, gapping the contour onto a polar plane through the characteristic polynomial as a mapping function, and analyzing the polar contour with the Principle of Argument. This is essentially Mitrovic's Method. He chose as mapping contours only the imaginary axis or a radial straight line in the left half plane, closing his contour through a circular arc of infinite radius so as to enclose all or part of the left half plane.
1^2
With mapping contour defined as above, a point on the contour is defined by
s = a) e^ V ' y = -co sin 6 + i co cos 0
n n ra
= - C 0Jn + j co^ J 1 - C2 (1-2)
Inserting equation 1-2 in 1-1 and requiring that reals and imaginaries are zero independently provides two equations in terms of co , the coefficients, and certain functions of £. But £ is a known number and for the usual case of analysis the coefficients are known. Thus two equations in one unknown (co ) are obtained. Mitrovic's procedure was to define (select) two coefficients as unknowns, thus providing two equations in two unknowns and a common parameter, co . He solved the equations for the unknown coefficients
in terms of co . Then choosing a value for £ and letting co take selected
n n
values, curves can be obtained by plotting one coefficient as ordinate and the second as abscissa with co as a parameter.
If this is done for a polynomial for which all coefficients are known numerically, then the actual values of the coefficients which were designated variables are the coordinates of a single point on the Mitrovic plot. Mitrovic showed how to evaluate stability and all left half plane roots of the polynomial from his curves and the location of this one point. If this point, called the M-point, is moved to a new location new roots and new coefficient values are defined. Then the physical system can be provided with the dynamics specified by the new roots if the system can be changed so that the two designated coefficients assume their new values without changing any other coefficients. This, in essence, is the result provided by Mitrovic, and to it he added considerable detail regarding specific techniques for using the method to design feedback control systems.
1 - 3
In his treatment Mitrovic defined as variables only the coefficients a. and a (see equation 1-1). Elliott, Heseltine and Thaler (3) used several other coefficients as variables in specific problems involving the design of feedback compensation for control systems, but did not generalize these results. Later Siljak made an independent study which generalized Mitrovic's results to any pair of coefficients, but did not expand or apply his results. This, then, was essentially the state of development of Mitrovic's method when this research was undertaken; the basic method using only the a and a., coefficients is well developed and techniques are available for applying it to many design problems. Mitrovic (1) and Siljak (5) also applied this method to sampled data systems. The basic theory of the generalized method has been established, and a few techniques have been developed to apply it to feedback compensation design. In general, practical ways to interpret stability, and to apply the generalized theory to analysis and design are lacking. Some advances in these areas are presented in this report.
1-3 Bibliography.
1. MLTROVIC9 DUSAN Graphical Analysis and Synthesis of Feedback Control Systems.
PART I Theory and Analysis.
PART II Synthesis.
PART III Sampled Data Feedback Control Systems.
Trans AIEE Pt. II January 1959
2. THALER G. J. and BROWN R. G. Analysis and Design of Feedback Control Systems, Ch. 10.
McGraw-Hill, 1960
1-4
3. ELLIOTT D. W.s G. J. THALER and J, C. W„ HESELTINE, Feedback Compensation Using Derivative Signals.
PART I Routh's Criterion, Root Loci
PART II Mitrovic's Method
Trans IEEE, Applications and Industry, November 1963.
4. SILJAK, D. Generalized Mitrovic's Method.
Trans IEEE, Applications and Industry (to be published).
5. SILJAK, D. Sampled Data Systems with Transport Lag by Mitrovic's Algebraic Method.
Trans AIEE Pt. II, November 1961. 6. MITROVIC D. M. Automatic Plotting of Characteristic Curves and Analogue Solution of Algebraic Equations Trans AIEE Pt. II
1 - 5
CHAPTER II THE GENERALIZED METHOD
2.1 Siljak's Results.
Through a formal derivation and rigorous proof Siljak obtained, in
symbolic form, a generalized expression for the Mitrovic Curves in terms
of any two selected coefficients. These results are; for Bi = B j, (i > j) N
Bi ■
JL0\<*n-i «> / ">j-i(°
Btf ■
s *k^*»k.ia>
k =0
tUPj-.j (C)
where A, is the coefficient of the k'th order term of the original polynomial,
and cp (C) are the functions defined by Mitrovic.
2.2 The Determinantal Approach. Tabulation of Equation Pairs.
Mitrovic's original result, (rearranged as in Ref. 2) expressed with
all coefficients designated as a's is?
ao = "V U2 *1 + a3 °°n ^2 + a4 % ^3+ '
+ a to
n n
n-2 <p , ...] i ^n-1
2 3
a, = a~ <p„ ui + a„ cp„ co + a, <P, to + 1 2 ^2 n 3 ^3 n + 4 ^4 n T
n-1
+ a <p to
n n . n
where them's are functions of £ and are tabulated elsewhere in this report In the original method a and a., were designated variables. In general any two coefficients may be chosen. To obtain specific equations for any two coefficients rearrange the above equations with both of the chosen
coefficients on the left hand side; for example a. and a %
2 3 2 T 2 n-2 "1
a. co <p, + a. co <p0 = -a - w a, a) (p, + ... + a to <p , 2 n 1 3 n 2 o n L 4 n ^3 nn ^n-U
-a_ cp- co„ - a_ <p„ to = -a, + a (p. to + .. . + a <p co„ 2 2 n 3 3 n 1 4 4 n nnn
n-1
2-1
These equations are simply simultaneous equations in a2 and a , and may be solved by the usual determinantal methods, i.e.,
A„
a2 =
*3
A * a3 = ~&
where A =
"n^l
n ^2
-% V2 ■*£ ^3
^
o n L 4 n ^3 n n vn-l J n .
(P. U? + ... +
-a, + a. <p. ur + ... + a (P co
1 4 ^4 n n *n n
n-1
"% ^3
*3 =
■4^1
-a;n(P2
-a
""n La4 "n ^3 + '" an % Vl J
"al + a4 ^4 Wn +
n-1 + a (p U n n n
If the indicated algebra is performed the desired relationships are obtained, as tabulated in Table 2-1 which follows:
2-2
TABLE I
(D Bo " Bl
Bd - [ A2 Wn"l «> + *3 <i*2 «>+-" + \ WX-1 «> ] Bl = A2 <t*2 «> + "A3 °£*3 ® + - + An "f ' »n «>
(2) Bo " B2
B0 = cpj1 (O [+ Aj Un<P1 (S) + A3 U)3^ (O + A4 «£<P2 (O +
•••v£v2«>]
B2 = %2 "21 «) [ -*! «S,»1 <« * A3 Wn"3 «> " \ ^4 «>
n
••' -An^n (°
(3) BQ - B3
**
B0 = Pi1 <D [" At Wn<p2 (C) - A2 co^ (C) I A4 ^ (O + ,
•••+An",>n-3«>" B3 = -O,;3^1 (C) [ + Ax ^♦jff) + A2 «^2(0 + A4 fa «> +
<4) B0 - B4
Bo " ^ (° [Al "n^S «> + A2 u^2 <0 + *3 Wn<Pl (° "
A. W <P, (O - ... A„ Uin(p . (£) 5 n 1 n n n-4
]
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\ = -%4 fl1 «>
L + Al "n"! <« + A2 <4»2 «> + A3 wn<"3 «> +
A. W5 <p, (£)+...+ A C0n<p (?) 1 5 n 5 n n n J
(5) Bt - B2
h" " 4l [ " Ao«>2 «> + A3 Wn*l «) + A4 a|>2 «) + ... +An">n-2«)]
B2 = %2 [" Ao*X «> + A3 «>2 «> + -+ An 4>n-l «> ]
(6) Bt - B3
Bl " °C "l" <G> [- A0 <P3 (O - A2 ^»j «) + A4 ftfo «) + + An<">n-3«>]
B3="%3 < «> [ Ao + A2 <"£ Vl <» + *» «4?3 «> +• • •+ An "(I Vl («
(?) »! - B4
*#
Bl " 41»31 «> [-Ao"* «> " A^»2«> ' A3 •i'l®^ A5 H>! <D+ -*V>„.4(0]
8»S4^ <« LAo + A2 4*>i «> + A3 4*2 «> + A5 <"£*4«> + ••• + An<Vl «>]
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(8) B2 - B3
B2 =■<£ [" Ao«>3 «> " Ax ^«>2 (?) + A4 fa (C) + Aj ^<p2 (D +
• • -+An 4 t-3 «> ] B3 = £ [" Ao^2 «> " H "a">l «> + \ <£*2 «> + •••+ An ^»-:
(O
(9) B2 - B4
B2 ■ <£*? (O [" A0*»4 (C) - Al Un*»3 <C) - A3 fa «) + A5^<p1+ ... + AnW>n.4 «)]
B4— <af<p'2l «) [ -ao«32 «) - ax u^ (O + a3 ol<Px «) +
A54V3<O+...+AnC0>n.2(o]
(10) B3 - B4
B3 = CO^^i1 (C) [" AJ94 (O - Aj «n^3 (O - A2fa (O + A5 (fo (C) + • • • +An u£ <Pn.4«) ]
b4= -<V} (o [- a0.»3 co - 4j ^»2 a) - a2 fa <o + a5o£
«.2«)+ • • • +An ugV3 (C) ]
Note: Those with * and ** have singularities at £ = 0 and C ■ .5 respectively.
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2.3 Discussion.
The equations of Table I are all of essentially the same form, and may be plotted or sketched in essentially the same way. Interpretation of the results is not obvious, however. Certainly if the imaginary axis is mapped (£• = 0) it should be possible to define stability from the location of the M-point, but stability has been defined pictorially only for the B vs B, case. Thus the interpretation of stability and other related topics must be investigated, and this is reported in Chapter 3.
One immediate difficulty appears in the equations for eveneven or odd-odd coefficients, such as B - B~; B~ - B,; B, - B~; B - B.. All such equation pairs contain a factor of the form<Peven CC )• Since all such factors contain £ as a factor, then <Peven (£ =0) -» » and the equations are uninterpretable. We have not as yet found a fundamental explanation of this nor a convenient way out of the dilemma. However, it is quite certain that the curve defined by these equations is a finite
curve, for example any selected point on the B vs B. curve for C = 0
o l
is also one finite point on a B vs B„ curve for which B, has the de
o 2 1
signated value. Further evidence of this was obtained as follows?
equations for negative £ were derived and B vs B? Mitrovic curves
were calculated by digital computer for a third order polynomial using
C = + .003 and + .001. The results are shown on Fig. 2-1. The grouping
of the curves is clear evidence that the B vs Bn curve for C s 0 must
o 2 *
lie between the £ = + .001 curves, and thus must be finite. Tn practice
use of a curve for £ =0.1 should normally be satisfactory for engineering
purposes.
In like manner for certain other pairs such as B - B~ and -1 o 3
B, - B, a factor of cp. (£) is obtained, which approaches infinity at
C ^O.S If other similar singularities exist they have not yet been
observed.
2-6
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CHAPTER III STABILITY CRITERIA
3.1 Basic Derivations
A stability criterion based only on the curve of B -B on the real two dimensional plane is derived. Any interpretation in terms of a phase plot of F (s) on the complex plane is undesired, because the former curve is plotted first, and it is more convenient to skip the phase plotting, if possible.
Any polynomial F (si can be put in the following forms
F (si = f (si + A s1 + A. s^ (3-1)
i J which is not zero if s is not a root of F (s). Also the same polynomial
in terms of B. and B. is given by?
F (s) - f (s) + B. s1 + B. sj (3-2)
It must be noticed that this F (s) is zero for any value of s, provided B. and B. satisfy the relations given already in the Table. Thus for these values of B„ and B., equations (3-1) and (3-2) combine tos
F (si = (A - Bi) s1 + (A. - B.) sj (3-3)
Here s is a complex number
s = w 111 2 + 9 (3-4)
nt—i
Substitute this into (3-3), and .
F(oo ) =(A, - B.) w1 /i Cnl 2 + 9) + (A. - B.) J j Cn/ 2 + 9)
n i .-;'i n * j j n '-*1
= (A, - B.) to1 e. + (A. - B.) J e.. (3-5)
i inixj jnj
e and e. are unit vectors in direction of —j + i 9 and ^ + j 0 respectively.
—♦ It is evident if the phase plot of Ffod ) with regard to co varying
from zero to infinity encircles the origin just the angle of n 77 / 2 +n 9 in the counterclockwise direction, that all of the roots have a damping ratio £ larger than £ = sin 9. The vector relationship in equation (3-5)can be used to determine some basic rules for the interpretation of stability on the Mitrovic plot. These rules are developed in the following paragraphs for most of the cases listed in Table I.
3-1
It should be noted that stability is determined by mapping the imaginary axis of the s-plane, ie., by the Mitrovic plot for £ = 0. A rule for this case is readily developed. When designing for good dynamic performance the location of the M - point can also determine whether a specification £ = C, is satisfied. Rules for this are also developed.
(1) B - B, o 1
The criterion for this case has been given by Mitrovic for both
£ = 0 and C > 0 cases.
It must be noticed that this belongs to the special group of
cases where the rule that B = const, must be cut first is valid
o
even for £ > 0. Rule i
For all of the roots to have a damping ratio £ larger than
sin Q, the B ■ const, line must be cut first. Cutting
points must lie alternately on B = const, and B, = const.
o 1
lines, as co is increased from zero to infinity.
(2) Bx - B,
(i> C - o
This leads, 9 being zero, to ex = /tt/2, e2 = /*_,
from equation (3-5).
As is shown in Appendix II, it is valid in any pair that
lira F ( to ) = A e (3-6)
kj n ' o o v '
n -* o
—♦
So the phase plot of F ( to ) starts from A on the real axis
_^ n o
at. U) = 0, and must cut e, first. This implies n
A2 ■ B2 and Ax > Bx (3-7)
at the first cutting, as can be seen from the equations
F ( a ) = ( k - B, ) to? 10 + ( A, - B, ) w„ e. . (3-8)
n i I n i linl
This is illustrated in fig. 3-2; the provision (3-7) is realized when B = const, line is cut first.
3-2
(ii) C > 0
In this case each unit vector becomes
e, s A/2 + 8, 12 = h + 2 6.
As is seen from fig. 3-3 of the phase plot, -e must be cut first. This implies that
A2 < V Al = Bl (3~9)
This is satisfied only when B, = const, line is cut first as shown in the same figure.
(3) B2 - B3
(i) C = 0
For this case, from equation (3-5);
«2 = I— ' ®3 = /3 ff/2 • Therefore the B~ = const, line must be cut first as is explained in fig. 3-4. (ii) C > 0
Again applying equation (3-5), where
*i =/ ff + 2 8, e3 = / 3 it/ 2 + 3 9,
it is easily seen the point cut first lies on the direction
—» vector - e~, which leads to
A3=B3, A2<B2.
Thus it is concluded that B^, namely Bodd must be cut first in this case also, as shown in fig. 3-5.
<*> *3 " B4
(i) C = 0
By the same analysis as the previous ones it is evident that
the B = const, line must be cut first in order to have a even
stable domain. (ii) C > 0
The Bodd = const, line must be cut first.
(5) BQ - B3
For this case equation (3-5) becomes
F(u) ) - ( A- - B~) a? e, + ( A^ - B ) en n J j n 3 ooo
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(i) C = o
®3 = / 3 it/ 2 , eQ = i_0_
—» The phase plot shows - e. must be cut first, which leads to
3 3 o o
This implies, as is seen from fig. 3-6, that B const, lime
o
must be cut first in B, - B plane.
3 O
(ii) £ > 0
o3 = /3
77/ 2 + 3 6, e = 0 .
■ I I ■ " !■■■»■■ ' C\ * '—
(6) Bx - B4
The phase plot for this case shows that the point cut first must
satisfy
A, < Bv A » B . 3 3 o o
which indicates, in terms of B - B, curve, that the B
o 3 o
const, line must be cut first as shown in fig. 3-7.
Equation (3-5) becomes . F(wn)= (A4- B4)o£'e4+ CAX -Bx)Woer
(i) c = o
*4 " I z * s f 0 » «! " /-ILL2- •
From the same analysis, it is evident that the e. line must be cut first, which means, in terms of B* - B, plot, B, = const. line must be cut first. (ii) C > 0
e4 = / 2 7T + 4 9 , eL = I-at 2 + 6
which indicates that the B, = const, line must be cut first. All of the remaining cases in the Table have singularities at £ = 0, but this difficulty can be avoided by merely starting the value of £ from a very small quantity. So £ = 0 case is dropped here intentionally. (7) B_ - B
2
£ is always assumed to be larger than zero, and unit vectors in equation (3-5) become;
e2 = I * + 2 d, eQ = / 0
3-4
(8)
(9)
B - B, o 4
B1"B3
(10) B, - B.
Fig. 3-8 shows that -e? must be cut first, which means,
B - B„ terminology, B = const. line must be cut first o Z o
order to make all of the roots have £ larger than sin 0
In this case unit vectors of equation (3-5) are
\=A9 > •„- /a. •
"4 ' - - * o
Almost the same analysis as before leads to the same conclusion pose.
B = const, line must be cut first for our puro
1z = ,/1 ff + 3 e
Fig. 3-9 shows e must be cut first. This is interpreted, in B. - B~ terminology, as B- - const, line must be cut first for the required purpose.
The same analysis requires that the B, = be cut first as the equation (3-5) becomes
t. line should
F< "„> = < \ - V
e4 +
A^
"2 ' 2 in this case. Seeing these rules, it is desirable to classify them into a few groups to simplify them, as given in the following.
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3.2 Summary of Enclosure Criteria -^line cut first and the least number of cutting - points
least number of cutting points
Case I | |
B o | Bl |
B o | B3 |
Bi | B2 |
B2" | B3 |
B3" | B4 |
B4" | B! |
the line | ||
cut first | least number of | |
C« o | cutting | points |
Bo | N | 1 |
B 0 | N | 1 |
B2 | N | 1 |
B2 | N | 1 |
B4 | N | 1 |
B,. | N | 1 |
the line |
cut first |
C > o |
Bo |
B o |
Bi |
B3 |
B3 |
Bl |
N + 1
N + 1
N + 1
N + 1
These six pairs permit the stability check in its strict sense, because they have no singularities at £ = 0, as has been already explained.
The next group consists of four pairs, all even - even and odd-odd and doesn't have the stability check in its narrowest sense, because all of them have singularities at £ = 0.
least number of cutting points
N + 1
N + 1
N + 1
N + 1
Case | II |
B o | B2 |
Bo | B4 |
Bl | B3 |
B2 | B4 |
the line |
cut first |
C> o |
B o |
B o |
B3 |
B4 |
In conclusion it can be said that the line for
even
= const, must
be cut first when stability is checked in
case.
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CHAPTER IV SKETCHING PROCEDURES
4»1 Need for sketching procedures„
Mitrovic°s method is a very convenient method as far as calculations are concerned, because it involves the use of real numbers only., Mitrovic visualized use of desh calculators with secretarial type help, or a digital computer, or an analog computer. All of these techniques take time, and while they are acceptable for detailed studies, the engineer making preliminary studies prefers a technique (such as root locus or Bode diagram) which provides reasonably accurate curves with essentially no numerical calculations beyond formulation of the equations. Mitrovic"s method will seldom be used for simple problems unless such a facility is available, and if it is not used for simple problems it is not likely that the engineer will develop the familiarity needed to apply it to more complex problems. Fortunately for most simple cases the Mitrovic curves for £ = 0 can be sketched rapidly, and for £ 4 0 only a little labor is involved. Sketching was first used in the Elliott, Thaler, Heseltine paper, but was not developed as a technique for general use. The results presented in this chapter are intended to extend the usefulness of sketching methods, 4o2 Basic Manipulations in Sketching The Mitrovic Curves„
A Mitrovic curve is a plot of two equations with a common parameter which is the frequency, co . Since the two equations are known, and
since the plot (for sketching purposes) covers the range 0 < 00 < + °° the
■~ n -~
locations of the two extreme ends of the curve are easily found by letting
CO - 0 in both equations and CO = » in both equations. With the two ends n n n
located evaluation of a few selected points on the curve permits sketching, and fortunately it is possible to locate maximum and minimum points which indicate the extreme excursions of the curve., Since the equations for the two adjustable coefficients B~ , B (also the coordinates of the plot!! ) are known it is easy to evaluate
dB dB
__£= 0; —Z= 0
dco dco
n n
4-1
These equations can be evaluated for amy order equations and for any value of £9 but for sketching purposes £ = 0 is usually wanted since it clearly indicates the range of values that provide a stable system. Conveniently the Mitrovic equations have their simplest algebraic form when £ = 0 so that numerical formulation of the equation is quite elementary<> Next the equations must be solved for their roots in order to find the
values of co at which the maxima and minima occuro For characteristic n
equations up to 5th order ( and in some cases to 6th order ) the polynomials are factorable and the results can be tabulated„ This has been done for a reasonable number of cases and the results are tabulated in
Table 4-1. Thus values of CO for the maxima and minima for any suitable*
n J
combination of coefficients, with £ = 0S can be found by referring to Table 4-1 and inserting the known values of the coefficients in the indicated relationships. It is then necessary to return to the original
Mitrovic equations and substitute each of the values of co s thus obtaining
n
the coordinates of the maxima and minima points. The Mitrovic curve for
C = 0 may then be sketched by starting at co ~ 0 and connecting the
points in order of increasing CO s noting that each known point is all
n
to be either a maximum or a minimum. This procedure usually provides adequate
information for preliminary analysis and design evaluationo Where a slightly
more accurate curve is desired additional points may be calculated in the
normal fashion, with the advantage that the known values of co at the max
° n
ima and minima guide the choice of additional co values.
n
When curves are desired for £ 4 0S the same sketching procedures aPPly» aa^ Table 4-1 also contains a number of entries for evaluation of maxima and minima. Mote that when £ 4 0 the Mitrovic equations are more complex algebraically so explicit solutions for the maxima and minima are restricted to equations of somewhat lower order.
For higher order equationss while sketching is still desirable^ explicit solutions for the maxima and minima are not available. Howevers the general Mitrovic equations can always be differentiated and the differentiated forms are given here in Table 4-2. These <s<in always be used to find the maxima and minima. Perhaps a simple graphical solution is fastest and most convenient % the proper equations are selected from Table 4-2 and into each selected values of co are inserted, obtaining values for d B
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at selected CO values. A plot is then made of _£_ vs co and -_y_ vs CO . n * dT^ n •&%- n
Each curve crosses the co axis at values of 60 corresponding to the maxima
n n
and minima.
4.3 Tabulation of Results and Suggested Procedures.
(Tables containing useful relationships are collected in the pages following.
Suggested Procedures: (these are largely a summary of the discussion in section 4.2)
1. From the characteristic equation determine the desired Mitrovic equations for £ = 0.
2. Substitute in these equations CO = 0 and CO = °° to locate the
^ n n
ends of the curve.
3. Inspect the Mitrovic equations to see if a ready solution exists
for zero points; ie., for what values of co are B = 0, B =0?
n x y
dB dB
4. Obtain the equations x = 0, y = 0 and solve for values
duT~ dco . n n
of co . n
5. Substitute the values obtained in 3 and 4 into the Mitrovic
equations to locate the B , B coordinates.
x y
6. Plot the known points and sketch the curve.
4.4 Illustrations of the Sketching Techniques Example I
For a third order equation B vs B,, £ = 0
3 2 F(s) = s +2s + B, s + B
1 o
= 0
2 B = 2 CO o
Bx = CO2
(4-1)
From the relationships in the table, B and B, are both equal to zero at CO = 0; they have no maximum or minimum points; both end in + ». Thus for
equation 4-1, a sketch of B - B, curve is shown in Fig. 4-1. Notice;
° >
all of the roots of F(s) have a damping ratio £ = 0.5 if B = 1, B, - 2.
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TABLE 4-2 DIFFERENTIATED FORMS OF MITROVIC5 EQUATIONS FOR USE IN EVALUATING MAXIMA AND MINIMA
BO VS B2
d B 9
d CO
= -[-2 A2W+ 3 A3 <p2 (D u? + ... + n An<Pn-1(C) CO*'1]
^^ = A2<p2 (C) + 2A3<P3 (C) W+ ... + (n-1) Ancpn (C) a/1"2
BI VS B2
Vir = -Ao^2 (° ^r+ 2 A3w "3 A4*2 «) ^2 - ••• -(n-D
d B 2 „ A
= -2 5g + A3<P2 <C> + 2 A4<p3 (C) CO+ .+ (n-2) An(Pn_1
<C> w
d 60 ^
n-3
B2 VS B3
±A* = -2 A0^3 (C) ij -AX V2 (O-^ + 2 A4 C0 + ... + (n-2)
W " 3 Ao*'2 «> "3> "2 Al -J + \f>2 «> + ••• + <n"3>
A„ ^n-2 Un"4 n n-z
B3 VS B4
W ■ -3 Ao **«Hr* "^1 *3 «>"£» "** *2 <«4r2 + *V '
W " 4Ao"3 «>1? + 3 Al *2 «>JJ "2 A2"^ + A5 *2 «) +
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TABLE 4-2 (Continued) BO VS B3
d B
IT =^0 K ^2 (O + 2 A2o; -4A4 co3 + ... + 0AnV3 <C> co11"1 ] d B 3 1 2-Ai .„. 1 .„. . _N
tst ■ ?^o L- ^+ A2 "2 «>"7 •*«*4 «> - • • • -<-3>
A f> CC) w""4 1
Bl VS B4
W = ^D L Ao*4 «> "7 -A2*2 «> + 2 A3 "+ -• + <^>
A <P , CC) ^n"2 1 n n-4 ^ J
lbjl = _jl_ r 4Ao + 2 % + a3 <p2 (O
dco <P3(C) L -J co3 3 2 a
^ - o.. - (n-4) CO
BO VS B2
t B d CO ^2
lJL0 = ^lO [ Ai -3Ai^2 + 4A4^2 «> ^3+ ••• + nAnV:
«) "n_1 ]
V^= OO [ ^ + A3*3 «> + 2 A4"4 «> <*> + ••• + <n"2)
£. (JJ
An*n«)"n"3]
Bl VS B3
d B 1 = 1 [ Aq <p3 (C) -ij + A2 -3 A4 J + 4 A5 <{>2 (C) CO3 + .. . +
CO
4A A dB3=«^0 \--JT-J -A4"3 <C> - 2 A5 *4 (C> « - ... "(n-3)
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TABLE 4-2 (Continued) B2 VS B4
T1T=^0 L2A.»4«> J-+Al*»3«>-^ + -♦*■*>
v,«(«»°'3]
A„V2«>"n"5]
BO VS B4 d B
IT = ^0 t Al*3 (° + 2 A2^2 <^> « -3 A3 » + 5 A5 » ... - (n-4) An <pn (C) aT5 ]
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F(s) =s3+s2+2s+l= (s + l)(s2 + s + 1)
s = -1, Example II
_1 + j 73
For a fourth order equation B vs B,, C = 0 an<* C = 0.2. F(s) ■ s4 + 4.2 s3 + 6.6 s2 + Bx s + BQ
For C - 0,
B = A0 CO2 - A, CO o 2 4 (4.2)
Bl = A3 CO
The table indicates thatboth B and B, begin from zero; B ends at -«,
° 7—i—5"
whereas B1 ends at + °°; B has a maximum at co = yA2/2A . Also equation
(4-2) indicates that B = 0 at co ■ JkTfkTT Thus : N o o 2 4
co for B = -v/6.6/2 « 1.8 max o
CO = ^6.6 = 2.6
o
B (1.8) = 10.9 B,(1.8) = 13.9
O J.
BQ(2.6) =0 Bx (2.6) = 27.7
The curves are shown in Fig. 4-2. For C ■ 0.2,
BQ = A2 co - A3 cp2(C) uf - A4 <p3 (C) co Bl = A2 (p2(C) w + A3 (p3(° °°2 + ktf^)(*
(4-3)
The table's indications are: both B and B, are equal to zero at CO = 0; both B and B, are equal to - » at co= », if £ = 0.2; each curve may have a maximum. The numerical values of the <p(£) functions are:
<P2(0.2) = 0.4 <P3(0.2) - 0.84
<P4(0.2) = -0.736
alues of co in 1 max
B and B, maximum, and they are:
The positive values of co in the table are the only ones which can make
max J
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CO for B max o
■ -3 x 4.2 x 0.4 + V(3 x 4.2 x 0.4)2+ 32 x 6.6 x o.84 =
8 x 0.84
= 1.4
co for B, max 1
= -4.2 x 0.84 - V(4.2 x 0.84)2 + 3 x 6.6 x 0.4 x 0.736 =
-3 x 0.74
= 3.5
The corresponding curves are shown in Fig. 4-3. Notice; all of the roots
of F(s) have a damping ratio £ = 0.6, if B = 2, B, = 5.4. This point
(5.4,2) is shown, in B - B,, curves for £ = 0 and £ = 0.2, to be in the
enclosure.
Example III
For a fifth order equation, B vs B,, £ = 0
F(s) = s5 + 7 s4 + 18 s3 + 23 s2 + Bn s + B
I o
* 2 . 4 B ■ A2C0 - A.C0
According to the indications of the table, both B and B, are zero at co = 0|
B = B, - -00 at co = *>; each has a maximum at
wmax (f°r Bo) = ^A2/2A4 * ^23/14 " 1-3,
CO max
(for BL) = */A3/2A5 = a/18/2 = 3.
Equation 4-4 shows that B is zero at co = Va_/A. = 1.8; B, is zero at 7-0 o o 2 4 1
= JA /Ac =4.2. Thus;
CO =
o
BQ (1.3) = 18.9 | Bx (1.3) • 26.8 |
B (3) = -360 o | Bj (3) = 81 |
BQ (1.8) - 0 | BL (1.8) = 48.3 |
•", BQ (4.2) ■ -1854 BL (4.2 = 0
The curves are shown in Fig. 4-4. Notice; All of the roots of F(s) have a damping ratio £ = 0.5 if
Bo | = | 6 |
h | = | 17 |
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This point (17,6) is shown in Fig. 4-4 to be in the stable domain.
Example IV
For a seventh order equation., B vs B,, C = 0
O JL
f £ g § "x *y
F(s) = s + 9 s + 33 s + 66 s + 81 s + 63 s + B^ + BQ
2 4 6
B = A„C0 - A,co + A,CO o 2 4 6
2 4 6
Bl = V° " A5Cd + A7^
>-5)
Table 4.1 shows that both B and B, are zero at CO - Ol B = B. = °° at 60 = °°5
o 1 o 1
both can have one maximum and one minimum^ but are not required to have such singular points other than at to - 0. Table 4.2 shows:
d B
r-2 ■ 2A„co - 4A,co3 + 6A,co5 dco 2 4 6
(4-6)
d B
dco
L - 2A3co - 4A co3 + 6A?co5
For this case B ' has three real roots: o
co = 0, co2 = 132
"* *T X
x 63 = 4.2 and 0.55
54
B- also has three real roots; co = 0, 1.15, and 4,5.
co = 0, 0.74, and 2,05
The curves may have a shape as in Fig, 4-5. From these, the shape of B " B, is apparent from the sequence of frequency for the maximum, minimum and zero points as shown in Fig. 4-6. Note that either (a) or (b) sketches are possible, because the magnitudes of B and B, have not been calculated.
If the critical values of to are substituted into the B and B, equations, the
o 1
coordinates of the points are determined and the sketch can be made accurate. Thus
CO | 0.74 | 2.05 | 1.15 | 4.5 |
2 CO | 0.55 | 4.20 | 1,33 | 20.7 |
4 CO | 0.30 | 17.65 | 1,77 | 428 |
6 CO | 0.16 | 74.1 | 2.35 | 8870 |
21
and the coordinates of the critical points are:
B (0*74) • 172 o | B1(Oo74) = 35 |
B (1.15) ■ -15 | B1(lol5) = 48 |
B (2o05) = -237 o | B1(2.05) = -170 |
B (4.5) ■ 52905 o | 8.(4.5) = -3553 |
Thus, the B vs B, curve is shown to be as in Fig. 4-7. Notice; All of the roots of F(s) have a damping ratio £ = 0.59 if B., = 29, B = 6.
F(s) = s7 + 9 s6 + 33 s5 + 66 s4 + 81 s3 + 63 s2 + 29 s + 6
- (s + l)2(s + )2 (s + 3)(s2 + s + 1). This point (29.6) is shown to be inside the stable domain. Example V
For the fourth order equation,, B» vs Bp C c 0.
4 2 2
F(s) = s + B~ s +B2s + 5.4 + 2
B9 - A-±j + A, CO2
60 H
R=Ai. (4-6)
*3 1 J.
The indications of the table are that both B2 and B<« are » at CO = 0l B? = °°, Bo = 0 at CO s= ooj bo has a maximum at
co=* (AQ/A4)1/4 = (2)1/4 * 1.18
Thus;
B2 (1.18) = 2.82,
B3 (1.18) = 3.83 and the curves are shown in Figs. 4-8 and 4-9. Notice all of the roots of F(s) have a damping ratio £ = 0.6 is B? = 6.69 B„ = 4.2
F(s) = s4 + 4.2 s3 + 6.6 s2 + 5.48 + 2
= (s + l)(s + 2)(s2 + 1.2 s + 1). The point (4,2, 6.6) is shown in the graph to be lying in the stable domain. Example VI
For a fifth order equation*, B. vs B.s C = 0
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F(s) = s + 7s + 18 s + B2 s + Bx s + 6
B, = A,C02 - A,co
1 3 5 (4-7)
B2= Ao "7 + V2
CO
The table shows that B. ■ 0, B2 " + » at CO = 0; B1 = -00* B2 = + " at co = »j B, has a maximum, and B9 has a minimum at?
CO - JkJ2k. = JWT= 3 max 3 5
">min = <VA4>1A = <6/7>"' = °-96 Equation 4-7 shows that B* is zero at CO ■ JkJk- - 4.24
O J D
Thus, the critical points are at;
B1(0.96) m 15.7
B1(3) = 63o6
8^4.24) = 0 The curves are shown in Figo 4-10 Example VII
For a fourth order equation, B, vs B.s C = 0^
4 3 2
F(s) = s + 4.6 s B2s + BjS + 2
Bl * W^IT + A3^2 - A4 cp2 CO co3
B2 = Ao h + A3 (P2(i:) w + A4 (p3C^) ^
CO
B2 | (0.96) =12.9 |
B2 | (3) = 63.6 |
B2 | (4.24) = 126.3 |
^8)
Table 4-2 gives the following equations, if the corresponding values of A, and cp, (£) are substituted;
d Bl 1 3 4
-j^ —ij (2.4 - 9.2 coJ + 3.6 aT)
CO
dB (4"9)
2 1 3 4
—j£ ■ - -i- (4-5.52 oT + o.88 oT)
co From the Table 4-1, it is seen that B, = B2 = + ■ at CO = 0;
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B, ~ B9 = -°° at to = °°. When £ = 0.6, the maximum or minimum frequency is not available through the routine methods. Even their existence is not readily checked.
Equation 4-9 can be used to improve the situation. It is seen from figure 4-11 that there may be two points where the difference of the curves is just 2.4, since by the differential calculus it is easily shown that the difference between the two curves attains its maximum value of 16.3 at to = 1.91. So there must be one frequency before 1.91, and another after 1.91, which realize these conditions. It is rather easy to find these values by trial and error, and they are found to be;;
00= 0.7 and 2.5 By reasoning of the whole figure, the smaller one must be the minimum point, and the larger one the maximum.
Through the same analysis applied to the other equation of 4-9, it is seen that to = 0.95 and 6.2 are the required ones. Thus, this second relationship provides Fig. 4-12. B« and b! are then plotted as ii Fig. 4-13 and the Mitrovic curve is sketched in Fig. 4-14
If the critical values of to are substituted into equation (48), the graph becomes more accurate;
B1(0.7) ■ 5.21 B2(0.7) = 7.65 B^O.95) = 5.51 B1(2.5) ■ 11.22 B1(6.2) = -109 B2(6.2) = 17.4 These are deduced by using the tableg
B2(0.95) - 7.05
B2(2.5) = 11.3
to | 0.7 | 0.95 | 2.5 | 6.2 38.4 |
2 to | 0.49 | 0.90 | 6.3 | |
3 to | 0.34 | 0.86 | 15.6 | 238 |
1/to | 1.4 2 | 1.0 | 0.4 | 0.161 |
1/to2 | 1.1 | 0.157 | 0.026 |
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A more accurate sketch of the B. vs B« curve Is thee available, as shown in Fig. 4-15. Notice; All of the roots of F(s) have a damping ratio £ = 0.8, if Bx ■ 6.2, B2 = 7.8.
F(s) ■ s + 4.6 s + 7.8 s + 6.2 s + 2
2
■ (s + l)(s + )(s +1.6 8+ 1),
This pair is shown to be in the enclosures, as should be.
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CHAPTER V THE DIGITAL COMPUTER PROGRAM
The aims of the present programming are;
(i) To print out the calculated values of any pair of B and
B : m
(ii) To make a graphical plot of this pair on section papers for each value of £.
The first is done by the usual digital machine, and the second is done by the digital analogue converter attached to the system.
Some safe-guard statements had to be included in the programming owing to the generalization of applicability to any pair, in addition to the original purposes of getting graphs and calculated results for varying £. These will be shown in the next section.
The practice of programmings
What is needed to run the machine is just to punch the cards according to the indication shown in the beginning part of the programming;
1) User's name and program identification;
2) Output specification,
Blank card is for the case both print and graph are required.
Punch "graph1' if graph only is required. Punch "print" if print only is required.
3) Order of equation.
4) Coefficients of equation, A ..., A , including the A and
on e
A which are assumed to be variable.
m
5) Values of e and m, such as 1 and 2 for B, - B~ case. The values of B and B vary in two ways; one, through the
changing value of £, and another, through co.
Usually there are no difficulties in changing the values of £ from 0 to 1 by an arbitrary chosen step if the difference of e and m is not even. If it is even, B values become infinite and the machine stops, as £ takes the value zero. The same situation occurs if the difference is a multiple of three when £ is equal to 0.5. These difficulties are auto
5-1
matically avoided by making the machine choose the adequate starting values and step width of £ in the programming.
The problem of how to find out the proper upper limit of co comes
next. It seems very logical to set the limit around the value of to which
makes the last term of each B dominate, or become larger than the sum of
other terms, since this actually assures that th© curve B - B is plotted
' © m
into the last quadrant where it ends at co = infinity. This is also necessary from the practical points It sometimes occurs in certain pairs of B
B with certain values of C that the curve re-appears in the first quadrant m
at the larger frequencies and divides the enclosure or stable domain;
changes a part of it to lie out of enclosure or unstable. Rather a
part is spent in the programming to secure the effective results. But in
many cases, the plotted graph of B - B becomes inaccurate by extending
the value of co this much, though the graph scaling is automatically set for
each value of £ in order to get a full resolution, since the values of them
at the start and at the end differ tremendously. On this occasion, it is
rather recommended to try to set the upper limit of co to just half of the
value indicated by the machine. This decreases the values of the highest
B and B to nearly one-sixteenth in the case of fourth order equations, e m
It is a good practice to decrease the values of CO after getting the printed results to get graphs with better resolution whenever it is necessary. It also improves the starting part of the printed results, and thus sometimes shows the maximum or minimum at the very lower frequencies hidden in the original setting. Anyhow, it is necessary to know the tendency of the curve at CO = 0 and at co = °> for correct understanding of the results, and it is very easy to get these knowledges by a glance at the B - B equations .
To improve the printed results is easily done by omitting certain statements which are inserted to make the. machine print out only; every tenth out of the 900 calculated results in the memory box required for the graph.
It may be said that many practical applications come out of this programming, and if some applications are beyond the present programming, it may be easily attained by just manipulating a few statements; For an example, if the behavior of the curve of B2 ° B at £ = 0 is needed, it is
5-2
easily attained by making the starting value of £ negative and the ending value positive just around the origin and thus getting the full account of the curve tendency there. Actually just two statements, namely, statement 74 and 49 are to be manipulated in this case.
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CHAPTER VI A PROCEDURE FOR COMPENSATION DESIGN
6.1 Cascade Compensation
Throughout the procedure of compensation design given here,, K9
K , or K is assumed to be the same as the original systema p
It is assumed that a system with a transfer function
m
euoo - —tr^r
Ko iSl(s + zi> (6-1)
n 5
sN ^(s + Pi)
is to be compensated by a filter with
K
G (s) - c S + z (6-2)
cv ' s + p * '
to have C > £ . Then the characteristic equation is — o
N + n + 1 , . N + n fp K v m + 1+
8 +AN+n(P)S ' + "°° + Am+ 1(P» Kc)S
+ A. (P, K ) s + k (P, K ) = 0 (6-3) J. c o c
Actually the last term is
A (P, K ) = K o P o N ' c' o
as K 's are constant. v
It is very remarkable that any of A (P) and Ag (P» Kc) is a
linear function of P and P and K » (This can be seen easily.) This implies that the gradient of B or B has some value independent of the value
of Ps determined only by values of C and 10 , and B and B are both linearly
■* ■ n e m
expressed in A and A«° This is seen as
". <P'Kc>-i.5.k»l & Jn *k <*' *c>
K <P>Kc> % =>c »« «> "£ Ac ^ V
The effect of the change of P and K values, fixing C and CO is shown as;
. c n
. r- B A, d A, -i
„ r a. a a. a° '6-s >
iB= E <B (O Of -r-£ A P + ;—p A K .
maKca nLo a K c J
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So A, and A are all linear in P and K . it is seen that both A B , and
\
A B depend only on the differences of P and K
Also | it is | seen dA | that | OA | |
e | e 9p dA | A P | C oA | AK | |
AA = m | m S p | A P | c | AK |
If an arbitrarily chosen P and K make the M (A , A ) point lie
on or inside the Mitrovic curve B - B with specified £ - C 9 * desired
em o
damping has been obtained and the design procedure ends. But this seldom occurs in involved problems. In such cases P and K must be varied so as to make a new M° (A°9 A") point lie on or inside the new B° - B° curve.
This is attained by making, at a certain value of to , say at CO = co s M°
n no
locus cut B° - B° curve. This is mathematically shown as em '
- b!
(6-7)
where
Ae = | K | ||
A' = m | B' m | ||
A" = Ae | A e | + | a a e eV p |
A' = m | A m | + | d A m cV p |
K = | Be | + | a P |
o A
e
A P + -5-j AK
c c (6-8)
A „ t B Am A K AP + nr c
o- B^
A p + ?rir A k
0 K c
c
B° = B +3Bm AP + 8Bi AK
m m rr nr c
r c
All A , A 1 B and B are previously calculated numbers. Trial values
of P and K determine them. Substituting (8) into (7),
C ^ d B & A N ^oboA.
Ae-Be=APC-?-F--rf) +AKcC5-ir-5-r)
c c
a -b . aPf—S-;-J£^ +ak f3r-2-jr-0
m m Vop opy c s. o K o K y
;>6-9)
c
From this A P and A K are given by
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where
AP = A | |
D A K = DKc C D | (6-10) |
,3 B 3 A s /5 B 5 A N nf e e\C m e 1 D ~" V o p 8pA-U ' o K 7 JB 9A n Uk & k y c c | JB b A f m B " v a p " a p |
/3B &A s xBB rf m mi r \ e V eUK " a k y ' cAh c c c | &. Ag ^ " & k y c |
Kc m V d p d p y eV5p | 9A n m A 'Spy |
C = A - B e e e | |
C = A - B . m mm |
)
It must be remembered that all of the terms in any bracket are numbers as C and ^ are specified.
Finally, if the newly found P° and K°S P° = P + A P
K ' = K + A K
c c c
are physically acceptable,, namely both P° and K° are positive and the magnitude of K is reasonable, then the design is completed and z is found to be z = P°/K<-'. If the solution is not acceptable this simply implies that a multiple section filter must be used.
If this happens, one tries to find values of P and K as favorable as possible for the "first stageo The next stage is just a repetition of the procedure given here* This process can be carried on until the specifications are met.
It also must be noticed that although the above mentioned method is very general, it is sometimes found that a simpler treatment is applicable and preferable.
If the order of the whole compensated system is high so as to have more than one pair of complex conjugate roots whose real parts are in the same order of magnitude, the above mentioned procedure must be followed rather strictly.
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But if it is known that there is just one pair of complex com' jugate roots, or of dominant complex conjugate rootss then more simplif procedure is applicable.
In this occasion it is justified to locate M (A , A )
© 3301
any part of the B - B curve in the first quadrant* It is not
to place them on or inside the enclosure part of the curve0
problem degenerates to just finding out the values of P and K which makes
A = B
e e
A - Bm (6-11)
n m
A, (P, K ) takes the following forms
Ak (P, kc) = ak p + j3k kc + yk» (6-12)
where a,, j3. , and y, are all given real numbers.
If (12 and (4) are substituted into (11) it gives? P te# - L<pl(0 J «k) + K£ -tfa - S^tf) uP 0k)
» K - = »,«> u_ «e) + Kc 0a - E va(D <£ 0C>
If £ and co are specified by some design requirements;, all coefficients are fixed in (6-13) and then equations become simultaneous equations
of P and K ; c
h P + L2 Kc = Ne
M, P + M0 K = N 1 2cm
whose solution is
N M9 - N L9 p - e I m Z
Ll "2 " L2 "l
K - N* H " Ne Ml c ' Ll M2 - L2 ^
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[6-15)
Here
Mj = ( am - £ cpa(C). <£ a,) (6-16).
Ne= (S^ttX^VV
If the values found for P and K are physically realizable, then
the design is completed. If it is not the case, then £ or to may be varied
• n
to find the acceptable values, in case such change of values of £ or and 40 are permitted. If it is not permitted,"then multisection compensation is needed. Example 6-1
420
Gu(8) = s(s + l)(s + 15)
is to be compensated to have £ > 0.6 by a cascade filter<> Solution:
Kc(s + z)
Gc(s) = <s + P) Characteristic equation is?
s4 + (16 + P) s3 + (15 + 16 P) s2 + (420 K + 15 P)
s + 420 P = 0 B, - Bp equations for C - 0.6 ares
Bi = hi (420 P) + (16+?>*£- 1.2 eg
n
B9 = 4-~-£ + 1.2 (16 + P) co - 0.44 (/ 2 (jji n n
n
A, ■ 15 P + 420 K
1 c
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A2 | =15+16 | F | ||||
CO ■ n | 0. | 7 | is | tried; Ai A2 P = K c z = | - BX 38 B2 ' Oo0034 = 0»024 c | L4: |
420K - 705.7 P = 7,58 c
+ 825 P ■ 2.8
Thus the required G (s) has the form
e (As -*0.O24(s t 0.141) V ; "* (s + 0.0034)
The root locus is seen in Figo 6-2. The points encircled by triangles are the roots of the system. This shows the applicability of the procedure. 6o2 Cascade Compensation (Continued)
For many problems it is more convenient to use less sophisticated design techniques, such as a combination of sketches with basic graphical interpretations, or curves calculated with the digital computer. Illustrations of these techniques are given in the following section.
Example 6.2
(S\ - 106
u^S - s (s + 5)
Design a lead compensation which makes the system have £ > 0.6. 106.K (s + z)
Solutions
G (S) s(s + 5)(s+P) The characteristic equation is
s3 + (5 + P)s2 + (5P + 106 K )s + 106 K z «= 0. Mitrovic equations for B - B, scheme are9 for this system?
B * (5 + P) co2 - 1,2 co3
Bx ■ 1.2(5 + P) CO - 0.44 co2 .
Here<p, (£) are expressed numerically for the value £ = 0«6» Previous tables
tell that the figure of B - B, is like Fig» 6-2 to have an enclosure. It
o i
is actually seen that
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U> - < w ml m2
holds for any P by the tabic Also they show that
B " ITT (5 + P)3> o max 10 % '
If A = 106 K z = 106 P is in or on this enclosure, the,following o c
relation must exists
106 P< ~p (5 + P)3.
P > 25, and 0< P< 0*1 satisfy this inequality., As a load section is required s P = 28 is adoptedo Then A ■ 2968. B is equal to this value if
o o
u>« 23o Substituting this value and P ■ 28 in the B. equation^ it is seen
Bx - 670
A, must have this value if M (A , A.) is on the £ = 0.6 curve. l o l
which gives and
A. = 5 P + 106 K = 670 1 c
K ■ 5,
c
z = P/K = 5.6,
c
Ttras G (s) turns out to be c
r> im\ 5 (s + 5.6)
GcW (s + 28)
If a lag network is desired, P ■ 0.1 is a good choice,
A - 106 P ■ 10.6 o
B has this value when co «* 2. B, has the value 10.48 o 1
A. = 5 P + 106 K = 10.48
1 c
K « 0.1 c
z ■ P/K ■ 1
Thus the lag compensation has
Example 6.3
cW (s + 0.1)
Gu(s) - 8 (s + 6)
1(8 + l)(s + 3) Stabilize this system with a single section compensation circuit,
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Solutions
Gc(s) - VS +
<s + p)
The characteristic equation for the whole system is
s4 + (4 + P) s3 + (3 + 4P + 8K ) s2 + J3P + (6 + z) 8K }
s + 48 K z - 0« c
The B. - B9 plane for £ = 0 is chosen and the Mitrovie equations
are
Bx = (4 + P) to2
B2 - 48 P/co2 + co2
K z ■ P is the relation to fflaaintain the error coefficient as before« From c
the tables given previously, it is seen the graph of B, - B2 has the shape shown in Fig. 6-3. Also the tables give
Bl min= 4 <4 + P> ^~P
Polar analysis, for which explanation is already given., tells that the M (A,, A„) point with the following relation
I 1m
lies in the stable domain.,
These equations are transformed, 11 P + 48 K = 4 (4 + P) TIF
3+4P+8K >8 7IF
c —
Multiplying the inequality by 6, subtract the former equation from it9 and the following inequality is derived?
(18 + 3P) > ^/48P (8 - P)
P > 4 and P< 0.1 satisfy this relation,. Here it must be noticed that too large and too small values of P tend to make the corresponding value of K impractical. In this cases P = 8 and P = 0.1 are found to be good trial values.
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P= 8
Blm« 12 * v^384 s 235,2
A = 88 + 48 K = 235o2
1 c
K = -~~= 3o06
c 48
A0 = 35 + 8K ■ 59o5
2 C
B2nT 2^48P * 39°2 < A2 Thus M (A., A«) surely lies in the stable domain. G (
is found to be
G (TsD = 3o06 (s + 2.56)
GeW (s + 8)
which is a lead network,
(ii) P ■ 0.1
By similar calculations' a lag network with the following tram
fer function is obtainedg
0.17 (s ± 0.61) (s + 0.1)
Example 6.4
G (8) . 8j- + e:
V ' s(s + l)(s + 3)
is to be compensated to have C > 0.4 by a single lead network. Solutions
B, = O.877+ A, CO2 - 0»8 CO3
1 CO J
A 2
B« ■ -x + 0.8 A«jC0 + 0.36 00
2 co2 3
First, assume P = 15, as was done in the previous problem. Comparing coefficients
B = ^r + 19 CO2 - 0.8 CO3
1 CO
790 7
B„ = T + 15.2 CO + 0.36 oT.
2 2
CO
These equations tell that the B- - B„ curve starts at infinity in the
first quadrant and ends at infinity in the second quadrant, as is seen
in Fig. 6«4. From the polar plot of Fig. 6-5, it is easily seen
the enclosure exists only when the B, - B9 curve takes the shape
in Fig. 6-4. This means B, is to have one minimum and one maximum, while
while B has just one minimum,, If tables in THALER & ROWNs Feedback Control Systems are used, this calculation is easily done and the shape of the curve is shown as follows in Fig. 6-6. The digital computer does the
same thing if the attached programming is used properly. Equation (11) showss
A. = 11 P + P + 48 K
1 c
A. » 3 + 4P + 8 K . I c
This A. is equated to B, = 600 to give the value of K 9
K m 9»1
c
This gives the value of A?
A2 - 63 + 72.8 = 135
which surely lies in the £ = 0.4 enclosure. Thus the required circuit is
r - hi <•* t l°65 c (s + 15)
Example 6-5.
/ x 420 GuW s s(s+ l)(s + 15)
is to be stabilized by a single section compensation circuit.
Solutions
_/ . 420 K (J + z) 6(s) ■ c^ '
s(s + 10(s + 15)(s + P) is assumed to be the transfer function of the stabilized system. Then characteristic equation for the system is
s4 + (16 + P)s3 + (15 + 16 P)s2 + (15 P + 420 K )s
+ 420 K z ■ 0 c
As A is determined by P only., the B1 - B« scheme is preferable.
The tables give the following equations for £ - 0%
2 Bl = A3 W
2 2
B0 ■ A /(0 + CO
l o
and the shape of the curve is shown in Fig. 6-7. Also the tables tell that
10
BjCui^J = 2VC
Bl<w»in> = A3 ^
o The polar analysis indicates that the M point with
Al = Bl^min> S B1
2 — 2 ouLn certainly lies in the stable domaino
These equations can be transformed into
15 P + 420 K - V420 P (16 + P)
15 + 16 P > 2 7420 P The inequality is satisfied
P > 4o5 or P < Oo2 From the root locus consideration a large value of P may be preferred, but too large a value tends to make the filter design impractical o This is also true with the case of two small a value of P. P ■ 25 is quite a good guess as is shown, P » 25
B, - (16 + 25) 7420 X 25= 4182
A. = 15 X 25 + 420 K = 375 + 420 K
1 c c
K = 9
c
and
B2 = 2 7420~~x 25 ■ 204
A£ = 15 + 16 X 25 = 415.
This shows the M (A,, A~) point surely lies in the stable domain*
The G (s) required can thus have the following forms
Example 6.6
Gux"' "s(s + l)(s + 15) is to be compensated to have £ > 0»6,
11
Solution:
If the compensator is assumed to be + z)
G Cs) =
c^ ' s + P the characteristic equation is
1 + P)s4 + (415 + 4lP)s3 + (375 + 415P + 3780K
+ (4155P + 10500K )ffl + 10500P ■ 0 The B, - B2 equations are (for £ ■ 0.6)
B, = 1.2 A /co + A.co2 - 1.2 k.tt? + 0c44 CO4
1 o 3 4
B0 = A /co2 +1.2 AJJi - 0.44 A.co2 - 0.672 CO3.
2 o 3 4
These equations are too complicated and it is rather unwise to have preliminary checks such as to see what ranges of P are adequate, or whether one section will suffice. It is noticed that a larger value of P is needed for the purpose from the view-point of root locus method, P = 30 is tried and the graph is depicted as in Fig. 6-8.
40 2.5 5 7.5 10 12.5 15
Bx 16 x 104 11 x 104 11 x 104 12 x 104 13 x 104 12.8 x 104
B2 5.4 x 104 2.2 x 104 2 x 104 1.9 x 104 2 x 104 2.1 x 104
This P = 30 is a little short of the specification as the K line ©an°t
c
hit the enclosure. The value of P must be changed a little. So the effect of changing P is cheekeds
d B, 1.2 x 10500
~dP co +41.co2- 1.2 coJ
dB2= ^500+ 1.2x41 co-0.44 co2
dP 2
co
This shows that at CO = 10
Bx (P + A P) - B1(P) = 15500 A P B2 (P + A P) - B2(P) ■ 157 A P
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Also it is seen that
A. (P + A P, K + A K ) - A, (P9 K ) - 4155 A P + 10500 A K 1 C C X ■■■ c s
A2(P + A P, Kc + A Kc) - A2 (P, Kc) = 415 A P + 3780 A Kc
If K = 1.63* then c
A.(P, K ) - A.(309 1.63) = 141765
1 c i
A2(PS Kc) = A2(30, 1.63) = 19000
Thus it is seem
B,(P + A P) = 12 x 104 + 4160 A P
AJP+ AP8 K + A K ) = 141765 + 4155 A P + 10500 A K X c c c
A (P + A P) ■ 1.9 ae 104 + 157 A P
A„(P + A P9 K + A K ) = 19000 + 415 A P + 3780 A K
2 e e c
Here B, (P + A P) and B2 (P + A Pj
To have the M (A.s A„) point in the enclosure the following equations are needed%
kx (P + A P, Kc + A Kc) = B1(P + A P)
A0 (P + A P, K + A K ) = B,(P + A P)
i. c c z
Substituting9„ the following results are obtained?
21765 - 11345 A P + 10500 A K - 0
e
258 A P - 3780 A K = 0. e
If A K = -Oolo then c
A P= 2 is obtained from the first of these equations. This makes the left side of the second equation equal to 894„ This means the M(A,» A.) point lies inside the new B, - B2 curve by the amount of 8949 which assures the stability with £ — 0°69 as the numerical values of the graph shows.
Thuss it is seen that
' e . 1.53 (s ± 20.9) GcW ~ (s + 32)
is the required compensation.
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Note; This method is applicable only when AP doesn-t change the shape of the resulting graph too much, that iss the relative positions of maxima and minima must be kept on before and after the change of P. 6<,3 Feedback Compensation
Mitrovic°s method9 whether it implies the original or extended one, is primarily just concerned with the system characteristic equation^, and so general procedures are the same in both cascade and feedback compensation. But in the latter compensation if a pure zero filter or pure derivative, and accel©rative ones are permitted*, the order of the original system need not be heightened. This means some simplification., Example 6.7
For the system of Fig* 6-9, find an adequate value for K to make the system have £ > 0.6. Solution: The system characteristic equation is
s3 + 16 s2 + (15 + 420 K )s + 420 = 0
t
B - B, equations with £ = O06 are given to be
B = 16 to2 - 1.2 u? o
B1 = 19.2 01 - 0.44 </
The polar analysis shows that B - B, curve must have the form of
o 1
Fig. 6-10 to satisfy the specification. The values of 00 are given by the
m
tables: 1
"ml ■ 8-8
which show the relation among the three coefficients is favorable to have an enclosure.
BoCaml> " 668°3'
As A is kept to be 420s, there must be two points on the curve for this case, o
CO - 5.9 is found to satisfy B ■ 420. B, (to) for this value is
B,(5<,9) = 19.2 x 5.9 - 0.44 x (5-9)2
- 98 Ax = 15 + 420 K = 98
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Thus K is found to be:
Kfc ** 0o2
Example 6,8
G (S) = - 450 (s + 4
uw s(s + l)(s + 5)(s +
is stabilized by acceleration feedback, as shown in Fig» 6-11. Solutions
What values of K are applicable?
8
The system characteristic equation is
4 + (13 + 450K )s3 + (47 + 1800 K )s2 + 485 s + 1800 = 0
S3, &
B9 - B» plane is preferable in this example, which gives for £ = 0,
A | ||||
B~ | o | 2 | ||
2 | , 2 40 A, | + | CO | |
B | ■ | 1 | ||
3 | 2 10 |
From the table it is seen that?
co2. =Vl800r= 42.4, min *
VW ■ 84-8
From the polar analysis of stability, it is seen that the B^ - B^
curve must have the shape shown in Fig» 6-12, and M (A„, A~) must be inside
this curveo So the following calculations are made to find the value of K %
a
2 CO | 1 | 810 | 42„4 | 50 | 100 | 200 | ||
18QC | i | |||||||
2 CO | 1800 | 180 | 42,4 | 36 | 18 | 9 | ||
B2 | 1801 | 190 | 84»8 | 86 | 118 | 209 | ||
B3 | 485 | 48o5 | 11.4 | 9,7 | 4o85 | 2„43 | ||
The | graph of Fig., 6 | 13 | shows | |||||
T K a | > J-L - 450 | • = 0*04 |
is applicable to get a stabilized system.
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PROGRAM MIT BLM C PROGRAM IS TO GRAPH MITROVIC THALER BL VS. BM CURVES FOR EQUATION C A(N)*S**tyt-A(N-l)* S**(N-1)+ .. + BL*S**L +».+BM*S**Mf. .+A(1)*
S + AZERO=C» C ACCORDING TO METHOD DEVELOPED BY THALER AND OTHERS. C PROGRAM IS DIMENSIONED FOR MAXIMUM N = 30* C PROGRAM IS NORMALIZED SO AS A(N) = 1*0
C A(L) AND A(M) ARE ASSUMED TO EXIST, BOTH BEING EQUAL TO ZERO, C DATA CARDS
C LUSERS NAME AND PROGRAM IDENTIFICATION COLUMNS 1 THRU 27» C 2. OUTPUT SPECIFICATION
C BLANK CARD IS PRINT AND GRAPH ARE BOTH REQUIRED,,
C WORD GRAPH IN COLUMNS 1 THRU 5 IF GRAPH ONLY IS REQUIRED.
C WORD PRINT IN COLUMNS 1 THRU 5 IF PRINT ONLY IS REQUIRED.
C 3oORDER OF EQUATION, N9 12 FORMAT. C 4« COEFFICIENTS AZERO THRU A(N), 8F10.2 FORMAT C 5cVALUES OF L AND M, 212 FORMAT.
DIMENSION A(30), PHI(60), BLAPHI (60), BMAPHI(60), BL(900), BM(900) 1 ITITLE(IO), JTITLE(10), 1(31)
C READ INPUT DATA
READ 100,(ITITLE(J), 3=1, 4)
READ 100,IOUTPUT
READ 101,N
READ 102,AZERO, (A(J), J = 1,1)
READ 103,L,M
100 FORMAT (A7,3A8)
101 FORMAT(12)
102 FORMAT(8F10.2)
103 FORMAT(212)
C SET UP ITITLE FOR GRAPH AND JTITLE FOR PRINT.
JTITLE(X) »=8HM
LDQ(ITITLE + 1),ENA(20B), LRS(6)9 STQ(ITITLE + 1) LDA(ITITLE + 4), ARS(6),LDQ(JTITLE + 1),LLS(6),STA(ITITLE + 4) ITITLE(5) =8HITROVIC ITITLE(6) =8HBL VS B ITITLE(7) =8HM CURVE DO 2 J=8, 10
2 ITITLE(J) =8H DO 3 J =1,10
3 JTITLE(J) = ITITLE(J)
C WE CHECK OUTPUT REQUIREMENTS
tTESTl = 8H ITEST2 = 8HGRAPH TTEST3 = 8HPRINT IF(ITSST1- IOUTPUT)12,ll,12
11 INDICPR = 1 INDICGR = 1 GO TO 17
12 IF(ITEST2 - IOUTPUT)14,13,14
13 INDICPR =0 INDICGR =1 GO TO 17
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14 TF<fITEST3-I0UTFUT)16,15,16
15 TNDTCPR =1 TNDICGR = 0 GO TO 17
16 PRINT 208 STOP
208 FORMAT (20H ERROR IN DATA CARDS) C PRINT RECORD OF INPUT DATAo
17 PRINT 200
PRINT 204,(JTITLE(J)9J ■ 1,7)
PRINT 206
PRINT 207,AZERO9(A(J),J = 1,N)
PRINT 202,L
PRINT 203,M
200 FORMAT(lHl)
201 FORMAT(1HO)
204 FORMAT(4X,7A8)
205 FORMATQHO,25HTHE ORDER OF EQUATION IS ,12)
206 FORMAT(1H0,39HTHE COEFFICIENTS9AZERO THRU A(N) ARE )
207 FORMAT(20X,El4o6)
202 FORMAT(7HBL IS B912)
203 FORMAT(7HBM IS B,12)
C THE EQUATION IS NORMALIZED SO AS TO GET A(N) ■ 1«0
ANRECIP = 1.0/ACN)
PRINT 212 212 FORMATC1HO, 10X,45 HTHE RESULTS REFER TO THE NORMALIZED EQUATION,)
AZERO = AZERO*ANRECIP
DO 5 J=1,N 5 AfJ) = A(J)*ANRECIP C THE STEP SIZE WILL BE TAKEN AS OOOl TIMES THE FREQUENCY OF INTERC ESTo FOR THIS AIM WE LOOK FOR THE VALUES OF OMEGAN WHICH MAKE BOTH
OF THE LAST TERMS IN BL AND BM DOMINATE FOR EACH VALUE OF ZETAo
LM =L-M
LM1 =XABSF(LM)
IF((LMl/2)*2-LMl)175,74,75
74 ZETA=Ool KK *5
GO TO 76
75 ZETA = 0»0 KK =6
76 DO 50 JJ =1,KK
C CALCULATE CFBYSHEV POLYNOMIALS,
20 PHI (61) —1. PHItf-32) =2.*ZETA NP30 = N+30
DO 21 K =33, NP3C
21 PHI(K) =-2.0*ZETA*PHIfK-l)-PHI(K-2 PHI BO) =0.
HN =30-N DO 105 J =MN,29 105 PHIO) =-PHIf60-J)
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c | THE TERMS TN BL AND BM ARE CALCULATED IN TWO STAGES DO 104 1 = 1,N | |
104 | B(fl + 1) = AQ) BCD = AZERO NPl = N +1 NMl = N- 1 NM2 = N-2 L29 = 29-L M29 ■ 29-M DO 22 1=1, NPl |
BLAPHIC1) = BCD *PHICI.,"+ M29)/PHlO0-LM) 22 BMAPHI(I) = B(I) *PHI(I + L29)/PHI<30+LM) OMEGAM = 0=5 DO 8K = 1,12 OMEGAM = 2.0*OMEGAM SL = BLAPHI(X) * OMEGAM**C-L) Ll = L + 1 DO 311 1 = 2,NPl
311 SL = SL + BLAPHI(D*OMEGAM**(T -Ll) NX =N-L IF(BLAPHI(NP1))71,170,71
170 IF(fBLAPHI(N))7C,172,70
71 BSA =BLAPHI(fNPl)*OMEGAM**NL GO TO 72
70 BSA = BLAPHI(N)*OMEGAM**(NL - 1) GO TO 72
172 TF<fBLAPHI(NMl)H71,173,171
171 BSA = BLAPHICNM1)*0MEGAM**(NL -2) GO TO #2
173 BSA = BLAPH1CNM2)*0MEGAM**CNL - 3>
72 BSLN = ABSF(BSA) BSL =ABSFCSL-BSA) TFfBSL-BSLN)9,8,B
8 CONTINUE
9 STEP = OMEGAM OMEGAN =0.5 DO 68 K =1,12 OMEGAN = OMEGAN*2.0
SM =BMAPHI(1)*QMEGAN**(-M)
Ml = M + 1
DO 312 1 =2,NPl
312 SM = AM +BMAPHICI) * OMEGAN** (I -Ml) IFCBMAPHI(NP1))81,180,81
180 IF(BMAPHIfN))80, 182,80
81 BSB = BMAPHI(NP1)*0MEGAN**NM
GO TO 82 80 BSB = BMAPHICN)*0MEGAN**(NM-1)
GO TO 82
182 IFfBMAPHI(NMl))181,183,181
181 BSB = BMAPHI(NMl)*OMEGAN**(NM-2) GO TO 82
183 BSB =BMAPHlCNM2)*OMEGAN**(NM-3)
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82 BSMN * ABSF ( BSB)
BSM ■ ABSF (SM - BSB) IF (BSM - BSMN)69,68,68
68 CONTINUE
69 STEW =OMEGAN
IF(STEP •- STEN)216,215,215 216 STEP = STEN*O.OOl
GO TO 123 215 STEP =STEP*OoOOl 123 DO 310 IOMEGAN =1,900
OMEGAN =IOMEGAN
OMEGAN =OMEGAN*STEP
SUML = BLAPHI (1) *OMEGAN**(-L)
SUMM =BMAPHI (1) *OMEGAN**(-M)
DO 23 1=2,NP1
SUML=$UML +BLAPHI(I)*0MEGAN**(I-L1)
23 SUMJ^SUMM +BMAPHlCl)*OMEGAN**(I-Ml) BL(IOMEGAN) = SUML
BM( I OMEGAN) = SUMM
PRINT EVERY TENTH POINT IF PRINT OUT IS REQUIRED.
IFCINDICPR-I) 310,24,310
24 IF(OMEGAN-l) 25,27,25
25 IFCXMODFCLOMEGAN , 100))26,29,26
26 IF(XMODF(IOMEGAN , 10))310,30,310
27 PRINT 200 PRINT 2Q9,ZETA PRINT 210
GO TO 310
29 PRINT 201
30 PRINT 211,OMEGAN,BL(IOMEGAN)9BM(IOMEGAN)
209 FORMAT(10X,35HRESULTS OF COMPUTATION WITH ZETA = ,F4.2)
210 FORMAT(//20X, 1OH OMEGAN ,10H BL ,10H BM
211 FQRMAT(19X,Ell.5,2X,Ell.5,2X,Ell.5)
CONTINUE
NUMPTS ■ 900
GRAPH IF GRAPH IS REQUIRED
IFCINDICGR -1)49,132,49 132 IF((LMl/2)*2-LMl)134,232,134 134 GO TO (33,34,35,36,37,38),JJ 232 GO TO (33,34,35,36,37),JJ
33 MODCURV -=0 LABEL = 2H1 GO TO 39
34 MODCURV =0 LABEL =2H2 GO TO 39
35 MODCURV =0 LABEL = 2H3 GO TO 39
36 MODCURV =0 LABEL = 2H4 GO TO 39
37 MODCURV =0
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LABEL = 2H5 GO TO 39
38 MODCURV =0 LABEL =2H6
39 SFX =0o0 SFY =0.0 MINOFFX =0 MINOFFY =0 LABELNO =11 MODE = 0
Nl =0 NE =0
CALL GRAPH2 (NUMPTS,BL,BM98,MODCURV,LABELSITITLE9SFX,SFY,MINOFFX, IMINOFF Y,LABELNO,MODE,Nl,N2)
49 ZETA =ZETA +0.2
50 CONTINUE END
END
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APPENDIX
If co goes to zero in the equation
i -»
?<(*)) = (A. - B.) o£ % + (A. - B.) <«P 1 (3-5) n i x n i j j^J
it becomes
lim F (co ) = -lin {b.Cco1 e. + B. (co ) (J e.i w _0 n l n l j a n jJ
= A
!* A J
Here e. and e. are i J
77
<Pj(C) *± -^(C) ej
l-i:
ei»/i|+ie-(-C
+ i/i -C2 )i
e4 = /j 5 + je - ( - c + i A -C2)j
l-2)
and the following expressions are derived
ex = -c +1 y i - cz=p0(C) ■ c <px(o -1 yi -c^!
- -i + ic* +1yi - c co = <px(o + c <p2(o -i7i -cz<Po(o
3n = «Vl (C> + « *n«> " * ^/^C^» From these formula, it is seen that
- i7i -c2«mo<p4
CA-4)
^(C) e. = cp.(C) V1.l(C) + C <PjCC> cp.(C)
-1 yr^p. co ^(q
APPENDIX (Continued)
Subtracting the latter from the former, it is seen
<t>±(0 Sj - (PjCO et = <p.(C) ^CO - <PjCC> ^i^CC) (A-7)
Also it is seen that
Pt(0 V}-i<& ~ ^(C) ^i.^C) = ^i-jCO (a-8)
from a simple mathematical induction. Substituting (A-7) and (A-8) into (A-l) gives
lim F (to ) = A - n o
co r* 0 n
which is the required result, equivalent to equation (3-6)
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